Bronzes with a Tunnel Structure $\mathbf{R b}_{\boldsymbol{x}} \mathbf{P}_{\mathbf{8}} \mathbf{W}_{\mathbf{8 n}} \mathbf{O}_{24 n+16}$. III. $\mathbf{R b}_{\boldsymbol{x}} \mathbf{P}_{\mathbf{8}} \mathbf{W}_{28} \mathbf{O}_{100}$: a Member Corresponding to a Non-Integral \boldsymbol{n} Value $\boldsymbol{n}=\mathbf{3 . 5}$

By J. P. Giroult, M. Goreaud, Ph. Labbé and B. Raveau
Laboratoire de Cristallographie et Chimie du Solide, LA 251, Institut des Sciences de la Matière et du Rayonnement, Université de Caen, 14032 Caen CEDEX, France

(Received 5 January 1982; accepted 26 March 1982)

Abstract

The member $n=3.5$ of the series $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{8 n} \mathrm{O}_{24 n+16}$ has been studied by X-ray diffraction. The structure of a single crystal with the composition $\mathrm{Rb}_{1.74} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$ has been established. The mean structure was solved in the space group $P 2 / c$ with $a=15.723(4), b=$ 3.764 (3), $c=17.118$ (4) $\AA, \beta=113.42$ (2) ${ }^{\circ}$, leading to $R=0.030$ and $R_{w}=0.033$ for 1512 reflections with $I \geq 0.005 I_{\max }$ and $\sigma(I) / I \leq 0.333$. The actual structure can be described with the cell $a, 2 b, c$, space group $P 2_{1} / c$. The host lattice of this compound is built up from ReO_{3}-type slabs connected through $\mathrm{P}_{2} \mathrm{O}_{7}$ groups. It can also be described as an ReO_{3}-type framework in which $\mathrm{P}_{2} \mathrm{O}_{7}$ groups replace two octahedra in an ordered manner. A comparison is made between this nonintegral member of the series and the integral members $n=3$ and $n=4$, especially concerning the distortion of the framework.

Introduction

Our previous studies (Giroult, Goreaud, Labbé \& Raveau, 1980, 1981) describe the structure of two members, $n=3$ and $n=4$, of a series of oxides with the general formula $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{8 n} \mathrm{O}_{24 n+16}$. These compounds exhibit, like the $A_{x} \mathrm{WO}_{3}$ bronzes (Magnéli, 1949), a tunnel structure and a metallic behaviour (Giroult, Goreaud, Labbé, Provost \& Raveau, 1981); however, they differ from $A_{x} \mathrm{WO}_{3}$ in that their host lattice is built up from both octahedra and tetrahedra. The structure of these phases can indeed be described as ReO_{3}-type slabs connected through rows of $\mathrm{P}_{2} \mathrm{O}_{7}$ groups forming distorted hexagonal tunnels where the Rb^{+}ions are located. This description allows one to predict a series of closely related microphases, which differ only one from the other by the number n of octahedra determining the width of the ReO_{3}-type slabs. In consequence, besides the insertion nonstoichiometry, a possibility of non-stoichiometry by intergrowth of two 'integral members' n_{1} and n_{2}, leading to non-integral n values, can be considered.

0567-7408/82/092342-06\$01.00

However, the great adaptability of the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups to the ReO_{3}-type framework lets us anticipate other arrangements of the WO_{6} octahedra and $\mathrm{P}_{2} \mathrm{O}_{7}$ groups which could render an account of non-integral n values. Thus, the present work deals with the structural study of the bronze $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$ which corresponds to $n=$ 3.5 .

Experimental

Sample preparation

In a first step, a mixture of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}, \mathrm{Rb}_{2} \mathrm{CO}_{3}$ and WO_{3} in appropriate ratios was heated in air at 900 K to decompose the phosphate and carbonate. Then, after addition of the theoretical amount of tungsten to obtain the composition $\mathrm{Rb}_{2} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$, the mixture was heated for seven days at 1270 K in an evacuated silica ampoule. Crystals were selected from the final sample after examination by X-ray powder diffraction.

Determination of the mean structure

The crystal selected for the structure determination was a b-axis needle limited by $\{100\},\{010\}$ and $\{001\}$ with dimensions $10 \times 28 \times 156 \mu \mathrm{~m}$. The Laue patterns showed monoclinic symmetry and the cell parameters (see Abstract) were deduced from a least-squares refinement based on 25 reflections. The systematic absences $(h 0 l, l=2 n+1)$ led to $P c$ or $P 2 / c$ and no superstructure reflections were observed.
The intensities were collected on a CAD-4 EnrafNonius diffractometer. The parameters of the data collection were fixed after a profile analysis of three reflections. The stability of the sample was verified by a periodic control. A total of 6054 reflections within a quarter of the reciprocal sphere of radius $\sin \theta / \lambda=$ $0.995 \AA^{-1}$ were measured, using Mo $K \alpha$ radiation filtered with a graphite monochromator. The background intensity was recorded on both sides of each reflection. Lorentz-polarization corrections were applied for 1512 independent reflections with $I \geq$ © 1982 International Union of Crystallography
$0.005 I_{\text {max }}$ and $\sigma(I) / I \leq 0.333$. The absorption correction ($\mu_{l}=471 \mathrm{~cm}^{-1}$) based on the crystal morphology led to transmission factors lying between 0.265 and 0.640 .

The structure was solved by the heavy-atom method in $P 2 / c$. The W -atom positions, fixed by the Patterson function, were refined by least squares. The Rb and O atoms were then located in the subsequent difference synthesis.

A study of the maps of electron density of Rb and P showed that the occupation of the corresponding sites is only partial, about 40% for Rb and 50% for P , as in $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{32} \mathrm{O}_{12}$ (Giroult et al., 1980). The atoms $\mathrm{O}(2)$, $\mathrm{O}(4), \mathrm{O}(6), \mathrm{O}$ (12) and $\mathrm{O}(13)$ are distributed over two neighbouring positions with an occupancy factor of 0.5 while the electron density contours appear to be almost spherical for the other atoms. As examples, the maps for $O(4)$ and $O(13)$ are given in Fig. 1. So, we have introduced split positions only for $\mathrm{O}(2), \mathrm{O}(4), \mathrm{O}(6)$, $O(12)$ and $O(13)$ and have refined the coordinates of all the atoms by full-matrix least squares. Scattering factors for $\mathrm{W}^{6+}, \mathrm{Rb}^{+}$and P were from Cromer \& Waber (1965) corrected for anomalous dispersion (Cromer, 1965), and for O^{2-} from Suzuki (1960). A linear weighting scheme was adjusted according to $\left.\langle w|\left|F_{o}\right|-\left|F_{c}\right|\right\rangle$ in terms of $\sin \theta / \lambda$. Refinement with anisotropic thermal coefficients for W and Rb atoms led to $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| \sum\left|F_{o}\right|=0.030$ and $R_{w}=$ $\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum{ }^{c} w\left|F_{o}\right|^{2}\right]^{1 / 2}=0.033$. Final atomic parameters for the mean cell of content $\mathrm{Rb}_{0.87} \mathrm{P}_{4} \mathrm{~W}_{14} \mathrm{O}_{50}$ are given in Table 1* and the projec-

* Lists of structure factors and anisotropic thermal parameters, and a complete list of distances and angles, have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36859 (19 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Maps of electron density (a) for the $\mathrm{O}(4)$ atom, (b) for the $\mathrm{O}(13)$ atom. The levels of contour lines are given on an arbitrary scale.

Table 1. Positional parameters with e.s.d.'s for $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$

$$
B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{l j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	Occupation	x	y	z	$B\left(\AA^{2}\right)$
Rb	0.44 (2)	0	0	0	$1 \cdot 3$ (2)
W(1)	1	0.27014 (4)	0.5094 (2)	0.06191 (4)	0.21 (1)
W(2)	1	0.15670 (5)	0.4596 (2)	0.22047 (5)	0.27 (1)
W(3)	1	0.38745 (6)	$0 \cdot 5026$ (3)	0.40637 (6)	0.31 (1)
W(4)	1	$\frac{1}{2}$	0.4910 (4)	$\frac{1}{4}$	0.42 (2)
$\mathrm{P}(1)$	0.5	0.078 (1)	0.403 (3)	0.3795 (11)	$0 \cdot 3$ (2)
$\mathrm{P}(2)$	0.5	0.078 (1)	0.596 (3)	0.3765 (12)	$0 \cdot 5$ (2)
$\mathrm{O}(1)$	1	0.254 (1)	0^{*}	0.0630 (8)	$0 \cdot 3$ (1)
$\mathrm{O}(2 A)$	0.5	0.119 (2)	0^{*}	0.2200 (18)	$0 \cdot 6$ (3)
$\mathrm{O}(2 B)$	0.5	0.168 (3)	0^{*}	0.2161 (28)	1.6 (6)
$O(3)$	1	0.391 (1)	0^{*}	0.4088 (9)	0.3 (1)
$\mathrm{O}(4)$	0.5	0.487 (3)	0^{*}	0.2426 (31)	1.9 (6)
$\mathrm{O}(5)$	0.5	0.101 (2)	0.013 (12)	0.3772 (20)	0.8 (2)
$\mathrm{O}(6)$	0.5	0.499 (3)	0.577 (5)	0^{*}	$-0.2(1) \dagger$
O(7)	1	0.021 (1)	0.531 (7)	0.1330 (12)	1.1 (2)
O(8)	1	0.195 (1)	0.543 (7)	0.1363 (12)	0.7 (2)
O(9)	1	0.375 (1)	0.502 (8)	0.1570 (10)	0.3 (2)
O(10)	1	0.445 (1)	0.481 (7)	0.3309 (14)	$0 \cdot 3$ (2)
O(11)	1	0.266 (1)	0.497 (10)	0.3075 (11)	0.6 (2)
$\mathrm{O}(12 A)$	0.5	0.093 (3)	0.563 (10)	0.3038 (22)	0.1 (4)
$\mathrm{O}(12 B)$	0.5	0.099 (3)	0.427 (11)	0.3092 (29)	0.5 (5)
$\mathrm{O}(13 A)$	0.5	0.142 (2)	0.423 (6)	0.4684 (14)	-0.3 (2) \dagger
$\mathrm{O}(13 B)$	0.5	0.140 (3)	0.568 (12)	0.4592 (28)	0.9 (5)
$\mathrm{O}(14)$	1	0.318 (1)	0.464 (8)	0.4835 (12)	$0 \cdot 6$ (3)

* Non-convergent parameter which oscillates about zero during the refinement.
\dagger Negative value due to the distribution of the atom over two neighbouring positions in the mean structure.
tion on to (010) is drawn in Fig. 2. Two features must be mentioned from these results: during the refinement, the y values of some O atoms oscillated about zero but did not converge; in this case, therefore, y has been fixed at zero. A negative value appeared for the B thermal coefficient of $O(6)$ and $O(13 A)$: this phenomenon is occasionally observed in the case of split positions. Here, one can note that the refined O(6) and $\mathrm{O}(13 A)$ split positions do agree with the values deduced from the electron density maps, and that the values for B obtained without splitting, were generally up to $3 \AA^{2}$.

The actual structure

The splitting of some O atoms, as shown by the electron density contours in the mean structure, is

Fig. 2. Projection of the mean structure on to (010).
abnormal. In the same way, the distribution observed for the P atoms in this mean structure is not possible because it would involve the existence in the \mathbf{b} direction of files of $\mathrm{P}_{2} \mathrm{O}_{7}$ groups enclosing face-sharing tetrahedra. Two interpretations of these observations can be made: the first by considering that the position of the $\mathrm{P}_{2} \mathrm{O}$, group as a whole is disordered, and the second by considering the existence of a superstructure involving the doubling of b, though no superstructure reflections were observed. A structure factor calculation for the superstructure reflections showed that the strongest would be 0.43% of the maximum intensity of the whole spectrum and thus they cannot give significant measures. However, the existence of the superstructure appears to be the most appropriate hypothesis for two reasons. First, the superstructure has been previously observed and weak reflections have been measured in the case of the members $n=3$ and $n=4$ (Giroult et al., 1980, 1981) and, secondly, it seems impossible to conceive a disordered arrangement of the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups in the \mathbf{b} direction which abides by the following conditions: the occupancy factor of the P sites is 0.50 in the mean structure and two successive $\mathrm{P}_{2} \mathrm{O}_{7}$ groups cannot have a common face. Then the only possible arrangement of the $\mathrm{P}_{2} \mathrm{O}$, groups is as shown in Fig. 3. If we consider the actual structure with the cell $a, 2 b, c$, a choice must be made concerning the location of the O atoms which appear to be split in the mean structure. The $\mathrm{P}(1)$ and $\mathrm{P}(2)$ atoms being located, a calculation of the $\mathrm{O}-\mathrm{O}$ distances allows one to choose from the $\mathrm{O}(12 A)-\mathrm{O}(12 B), \mathrm{O}(13 A)-\mathrm{O}(13 B)$ and $\mathrm{O}(2 A)-\mathrm{O}(2 B)$ atoms, the positions giving distances too short being rejected. The best solution is then described by Fig. 3 which shows the deformation of the ReO_{3}-type framework imposed by the presence of the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups. This deformation appears to be localized to the neighbouring O atoms, contrary to the term $n=4$ of the series where the deformation of the ideal perovskite framework is gradual. One can observe that the movement of the $\mathrm{O}(12)$ and $\mathrm{O}(13)$ atoms from the ideal

Fig. 3. Partial projection on to (100) showing the adjustment of the $\mathrm{P}_{2} \mathrm{O}_{7}$ group in the framework.

Fig. 4. Projection of the actual structure on to (010) limited to the oxygen framework from $y=0$ to $y=0 \cdot 5$.
positions, noted by the arrows on Fig. 3, corresponds to a distortion of the $\mathrm{W}(1)$ and $\mathrm{W}(2)$ octahedra, but not to their tilting.

Concerning $O(4)$ and $O(6)$, consideration of interatomic distances does not allow one to choose between the two possible positions. The splitting appeared clearly in the mean structure, due to the existence of a twofold axis and of a centre of symmetry, but we have no data to consider any space group other than $P 2 / c$ for this mean structure. The splitting of atoms located far from the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups was not observed in the terms $n=3$ and $n=4$ of the series, so we have no explanation and we represent in Fig. 4 the projection of the actual structure with an arbitrary choice for the location of $O(4)$ and $O(6)$.

Description of the structure and discussion

As shown in Fig. 5, the structure of $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$ is closely related to those of the integral members $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{24} \mathrm{O}_{88}$ and $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{32} \mathrm{O}_{112}$. The host lattice of such compounds can be described as ReO_{3}-type slabs connected through $\mathrm{P}_{2} \mathrm{O}_{7}$ groups which form distorted hexagonal tunnels with the WO_{6} octahedra located at the boundary of the slices. The extension of these slabs is characterized by the number n of octahedra which form the strings directed approximately along the [403] direction of the $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$ cell. For the compound described here, the width of the slab is not constant since the value $n=3.5$ corresponds to the succession along the [001] direction of strings built up alternately from three and four WO_{6} octahedra (Fig. $5 b$). These results show that this structure does not correspond to an intergrowth of the members $n=3$ and $n=4$ which would involve a succession alternately of layers three and four octahedra wide (Fig. 5d). The distinctive feature of a non-integral member, compared to an integral one, is that the rows of tunnels are shifted one with respect to the other in the [001] direction (Fig. 5).

Fig. 5. Projection of the idealized structure (a) for the member $n=3,(b)$ for the member $n=3 \cdot 5$. The vectors \mathbf{a}^{\prime} and \mathbf{c}^{\prime} belong to the perovskite cell (c) for the member $n=4$ of the series $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{8 n} \mathrm{O}_{24 n+16}$, (d) for the theoretical intergrowth of the members $n=3$ and $n=4$.

Another description of this structural family can be obtained by considering the strings of polyhedra directed along the [100] direction of the cubic perovskite cell and which are transversal with respect to the rows of tunnels (Fig. 5). One observes distorted ReO_{3}-type strings in which one WO_{6} octahedron (O) is periodically replaced by a PO_{4} tetrahedron (T), leading to the following sequences: $(O)_{3} T$ for $n=3,(O)_{4} T$ for n $=4$ and $(O)_{3} T(O)_{4} T$ for $n=3.5$ (Fig. 5). Thus it appears that these oxides can be described as $\mathrm{ReO}_{3}-$ type frameworks in which $\mathrm{P}_{2} \mathrm{O}_{7}$ groups replace groups of two octahedra in an ordered manner and play the role of ordered structural defects. The connection between these strings of polyhedra in the member $n=$ 3.5 is different from that observed in the integral members as shown in Fig. 6. That could be at the origin of the differences observed for the deformation of the host lattice of $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}(n=3 \cdot 5)$ with regard to the integral members $n=3$ and $n=4$.

In the actual structure of $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$, there are two possibilities of coordination for each W atom of Table 1 , except for $W(4)$ which is located on the twofold axis. The distances $\mathrm{W}-\mathrm{O}$ listed in Table 2 show that the coordination for $\mathrm{W}(4)$ is near to a regular six octahedral coordination with $\mathrm{O}-\mathrm{W}-\mathrm{O}$ angles close

Fig. 6. Connection between the strings of polyhedra (a) in the integral term $n=3,(b)$ in the member $n=3 \cdot 5$.

Table 2. Coordination of Rb and W atoms in the actual structure
Interatomic distances are given in $\dot{\mathbf{A}}$.

Bond	$\mathrm{Rb}-N$	$\mathrm{W}(1)-N$	W (2)-N	$\mathrm{W}\left(2^{\prime}\right)-N$	W(3)-N	W(4)-N
Neighbourhood N						
O (1)		$\left\{\begin{array}{l} 1.936(3) \\ 1.866(3) \end{array}\right.$				
$\mathrm{O}(2 A)$			2.12 (1)	1.83 (1)		
$\mathrm{O}(2 B)$			1.743 (7)	2.045 (6)		
$\mathrm{O}(3)$					$\left\{\begin{array}{l} 1.893(2) \\ 1.873(2) \end{array}\right.$	
O(4)						$\left\{\begin{array}{l}1.858(4) \\ 1.926 \text { (4) }\end{array}\right.$
$\mathrm{O}(5)$						
O(6)					$\left\{\begin{array}{l} 1.89(3) \\ \text { or } 1.87(3) \end{array}\right.$	
O(7)	$\left\{\begin{array}{l}2 \times 2.80(2) \\ 2 \times 2.95 \text { (2) }\end{array}\right.$		2.08 (2)	2.08 (2)		
O(8)		2.06 (2)	1.79 (2)	1.79 (2)		
O(9)		1.79 (1)				2×1.98 (1)
$\mathrm{O}(10)$					1.85 (3)	2×1.90 (3)
O (11)			1.77 (1)	1.77 (1)	1.99 (1)	
$\mathrm{O}(12 A)$				2.08 (5)		
$\mathrm{O}(12 \mathrm{~B})$			2.06 (6)			
$\mathrm{O}(13 A)$	2×2.96 (3)	(2.03 (2)				
$\mathrm{O}(13 \mathrm{~B})$	2×3.03 (5)	(or $2 \cdot 13$ (4)				
O(14)		1.79 (2)			2.02 (2)	

to 90 and 180° and a $\mathrm{W}(4)$ atom displacement of 0.01 (2) \AA from the centre of gravity of O neighbours: so we can consider that $W(4)$ is perfectly centred in its octahedron. A $4+2$ coordination appears for the $\mathrm{W}(1)$ atoms with a displacement of 0.22 (2) \AA, and for the W(3) atoms in spite of a weak displacement of 0.03 (2) \AA [or 0.10 (2) \AA for the second sort of W(3)] from the centre of gravity. The $\mathrm{W}(2)$ atoms, which are linked to two $\mathrm{P}_{2} \mathrm{O}_{7}$ groups, are the most disturbed: their coordination is $3+3$ and the displacement is 0.24 (3) or 0.31 (3) \AA from the centre, the most important we have observed now in that structural type. Thus, the WO_{6} octahedra of the $\mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$ framework are more distorted than those of the members $n=3$ and $n=4$. On the other hand, no tilting of the octahedra is observed for $n=3.5$ contrary to the members $n=3$ and $n=4$.

The distances and angles concerning the $\mathrm{P}_{2} \mathrm{O}_{7}$ group are given in Table 3. This group does not appear to be geometrically different from those observed in the integral members (Giroult et al., 1980, 1981). The only difference concerns the steric effect of the $\mathrm{P}_{2} \mathrm{O}_{7}$ group which is somewhat more important in the member $n=$ $3 \cdot 5$ than in the integral members $n=3$ and $n=4$. The O-O distances between two different tetrahedra are given in Fig. 7 and show that the distance between the $\mathrm{O}(7)$ atoms $(3.76 \AA)$ is much larger in the member $n=$ $3 \cdot 5$ than in $n=3$ and $n=4$. This corresponds to greater distances between $\mathrm{O}(7)$ and the bridging oxygen atom in $n=3.5(2.59$ and $2.69 \AA)$ than in the integral members (close to $2.50 \AA$) and shows a certain
adaptability of the $\mathrm{P}_{2} \mathrm{O}_{7}$ group in spite of its apparent rigidity.

The cages and tunnels are similar in both structural types but the location of Rb^{+}in the distorted hexagonal tunnels merits discussion. The solution we retained for the integral members was deduced from the observed symmetry and from the tilting of the WO_{6} octahedra: the structural configuration led us to consider that $\mathrm{P}_{2} \mathrm{O}_{7}$ groups on both sides of the pseudohexagonal tunnel are lying at the same level y, the most probable Rb^{+}site being at the level where the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups are missing. These features do agree for the member $n=3.5$ with Rb^{+}on a centre of symmetry, with an 8 coordination and suitable distances (Table 2). However, in $n=3.5$ the WO_{6} octahedra are distorted but not tilted, and we cannot reject a second hypothesis where, on each side of a pseudohexagonal tunnel, the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups are

Table 3. The $\mathrm{P}_{2} \mathrm{O}_{7}$ group in the actual structure: interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{P}(1)-\mathrm{P}(2)$	$3.04(2)$	$\mathrm{O}(5)-\mathrm{P}(1)-\mathrm{O}(12 A)$	$104(2)$
$\mathrm{P}(1)-\mathrm{O}(5)$	$1.52(5)$	$\mathrm{O}(5)-\mathrm{P}(1)-\mathrm{O}(13 B)$	$111(3)$
$\mathrm{P}(1)-\mathrm{O}(7)$	$1.55(3)$	$\mathrm{O}(7)-\mathrm{P}(1)-\mathrm{O}(12 A)$	$104(2)$
$\mathrm{P}(1)-\mathrm{O}(12 A)$	$1.53(5)$	$\mathrm{O}(7)-\mathrm{P}(1)-\mathrm{O}(13 B)$	$105(2)$
$\mathrm{P}(1)-\mathrm{O}(13 B)$	$1.46(4)$	$\mathrm{O}(12 A)-\mathrm{P}(1)-\mathrm{O}(13 B)$	$111(3)$
$\mathrm{P}(2)-\mathrm{O}(5)$	$1.61(5)$	$\mathrm{O}(5) \mathrm{P}(2) \mathrm{O}(7)$	$112(2)$
$\mathrm{P}(2)-\mathrm{O}(7)$	$1.52(3)$	$\mathrm{O}(5)-\mathrm{P}(2)-\mathrm{O}(12 B)$	$108(3)$
$\mathrm{P}(2)-\mathrm{O}(12 B)$	$1.46(6)$	$\mathrm{O}(5)-\mathrm{P}(2)-\mathrm{O}(13 A)$	$109(2)$
$\mathrm{P}(2)-\mathrm{O}(13 A)$	$1.63(3)$	$\mathrm{O}(7)-\mathrm{P}(2)-\mathrm{O}(12 B)$	$113(2)$
$\mathrm{P}(1)-\mathrm{O}(5)-\mathrm{P}(2)$	$153(3)$	$\mathrm{O}(7)-\mathrm{P}(2)-\mathrm{O}(13 A)$	$104(2)$
$\mathrm{O}(5)-\mathrm{P}(1)-\mathrm{O}(7)$	$122(2)$	$\mathrm{O}(12 B)-\mathrm{P}(2)-\mathrm{O}(13 A)$	$110(2)$

Fig. 7. Steric effect of the $\mathrm{P}_{2} \mathrm{O}_{7}$ group (a) in the member $n=3$, (b) in the member $n=3 \cdot 5$, (c) in the member $n-4$ of the series $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{8 n} \mathrm{O}_{24 n+16}$.
shifted each with respect to the other by the \mathbf{b} vector. Then Rb^{+}could be located near the y level of $\mathrm{O}(5)$ and should present a 7 coordination. The hypothesis where Rb^{+}could be located at the same y level as $\mathrm{O}(7)$ and $\mathrm{O}(13)$ is unlikely because two $\mathrm{Rb}-\mathrm{O}$ distances would be too short.

Conclusion

This structural study shows the existence of nonintegral members in the series of oxides with the general formula $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{8 n} \mathrm{O}_{24 n+16}$. The oxides $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{28} \mathrm{O}_{100}$
($n=3 \cdot 5$) are not formed by the intergrowth of two integral members but by a variation in the number of WO_{6} octahedra (alternately three and four) which build up the perovskite slabs of the framework. The cages, the tunnels and the location of Rb^{+}appear to be similar to those of the integral members $n=3$ and $n=4$. Nevertheless, the deformation of the ideal perovskite framework, due to the presence of $\mathrm{P}_{2} \mathrm{O}_{7}$ groups, is localized and different from the progressive distortion by tilting which was observed in $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{24} \mathrm{O}_{88}$ and $\mathrm{Rb}_{x} \mathrm{P}_{8} \mathrm{~W}_{32} \mathrm{O}_{112}$.

References

Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18 , 104-109.
Giroult, J. P., Goreaud, M., Labbé, Ph., Provost, J. \& Raveau, B. (1981). Mater. Res. Bull. 16, 811-816.
Giroult, J. P., Goreaud, M., Labbé, Ph. \& Raveau, B. (1980). Acta Cryst. B36, 2570-2575.

Giroult, J. P., Goreaud, M., Labbé, Ph. \& Raveau, B. (1981). Acta Cryst. B37, 1163-1166.

Magnéli, A. (1949). Ark. Kemi, 1, 213-221, 269-272.
Suzuki, T. (1960). Acta Cryst. 13, 279.

Structure du Tétrafluorure de Zirconium, $\mathbf{Z r F}_{4} \boldsymbol{\alpha}$

Par R. Papiernik, D. Mercurio et B. Frit*
Laboratoire de Chimie Minérale Structurale, Groupe de Recherches et d'Etudes Céramiques, LA CNRS n $n^{\circ} 320$, 123 rue Albert Thomas, 87060 Limoges, France

(Reçu le 3 décembre 1981, accepté le 1 avril 1982)

Abstract

$\alpha-\mathrm{ZrF}_{4}$, the high-temperature polymorph of zirconium tetrafluoride, crystallizes with tetragonal symmetry, space group $P 4_{2} / m$, and $a=7.896(1), c=$ 7.724 (1) $\AA, Z=8, D_{m}=4.55, D_{x}=4.61 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu($ Mo $K \alpha)=44 \mathrm{~cm}^{-1}$. Its structure has been solved by single-crystal X-ray analysis and refined to a conventional $R=0.030\left(R_{w}=0.031\right)$ for 1335 independent reflexions recorded on a four-circle automatic diffractometer. The structure is a threedimensional framework of triangular ZrF_{8} dodecahedra sharing corners along $O x$ and $O y$ axes, and edges and corners alternately along $O z$. An alternative approach is to consider it as a stacking of three atomic

[^0]0567-7408/82/092347-07\$01.00
layers: a 3^{2}.4.3.4 planar network of Zr atoms, a $\left[(3.5 .4 .5)^{2}, 3.5 .3 .5\right]$ and a distorted $\left[(4.6 .8)^{2}, 6.8^{2}\right]$ planar network of F atoms. Its relationship to the monoclinic $\beta-\mathrm{ZrF}_{4}$ structure as well as to the ReO_{3} type is described and discussed.

Introduction

Quatre variétés polymorphiques du tétrafluorure de zirconium ZrF_{4} sont connues à ce jour: une variété amorphe et trois variétés cristallines: α, γ et β (Gaudreau, 1965).

Seule la variété β de symétrie monoclinique, thermodynamiquement stable à température et pression ordinaires - les trois autres variétés se transforment irréversiblement en la variété β par chauffage plus ou © 1982 International Union of Crystallography

[^0]: * Auteur auquel toute correspondance doit être adressée.

